YES 2.008 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Main
  ((truncate :: RealFrac a => a  ->  Int) :: RealFrac a => a  ->  Int)

module Main where
  import qualified Prelude



Lambda Reductions:
The following Lambda expression
\(m,_)→m

is transformed to
m0 (m,_) = m

The following Lambda expression
\(_,r)→r

is transformed to
r0 (_,r) = r

The following Lambda expression
\(q,_)→q

is transformed to
q1 (q,_) = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ IFR

mainModule Main
  ((truncate :: RealFrac a => a  ->  Int) :: RealFrac a => a  ->  Int)

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero

is transformed to
primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y))
primDivNatS0 x y False = Zero

The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
HASKELL
          ↳ BR

mainModule Main
  ((truncate :: RealFrac a => a  ->  Int) :: RealFrac a => a  ->  Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.
Binding Reductions:
The bind variable of the following binding Pattern
frac@(Double vy vz)

is replaced by the following term
Double vy vz

The bind variable of the following binding Pattern
frac@(Float ww wx)

is replaced by the following term
Float ww wx



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
HASKELL
              ↳ COR

mainModule Main
  ((truncate :: RealFrac a => a  ->  Int) :: RealFrac a => a  ->  Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
HASKELL
                  ↳ LetRed

mainModule Main
  ((truncate :: RealFrac a => a  ->  Int) :: RealFrac a => a  ->  Int)

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
m
where 
m  = m0 vu6
m0 (m,vv) = m
vu6  = properFraction x

are unpacked to the following functions on top level
truncateM0 xw (m,vv) = m

truncateM xw = truncateM0 xw (truncateVu6 xw)

truncateVu6 xw = properFraction xw

The bindings of the following Let/Where expression
(fromIntegral q,r :% y)
where 
q  = q1 vu30
q1 (q,wz) = q
r  = r0 vu30
r0 (xu,r) = r
vu30  = quotRem x y

are unpacked to the following functions on top level
properFractionVu30 xx xy = quotRem xx xy

properFractionQ1 xx xy (q,wz) = q

properFractionQ xx xy = properFractionQ1 xx xy (properFractionVu30 xx xy)

properFractionR0 xx xy (xu,r) = r

properFractionR xx xy = properFractionR0 xx xy (properFractionVu30 xx xy)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
HASKELL
                      ↳ NumRed

mainModule Main
  ((truncate :: RealFrac a => a  ->  Int) :: RealFrac a => a  ->  Int)

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
HASKELL
                          ↳ Narrow

mainModule Main
  (truncate :: RealFrac a => a  ->  Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNatS(Succ(xz240), Succ(xz250)) → new_primMinusNatS(xz240, xz250)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
QDP
                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Zero, Zero) → new_primDivNatS00(xz24, xz25)
new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)
new_primDivNatS00(xz24, xz25) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))
new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) → new_primDivNatS0(xz30000, xz31000, xz30000, xz31000)
new_primDivNatS0(xz24, xz25, Succ(xz260), Zero) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))
new_primDivNatS(Succ(Zero), Zero) → new_primDivNatS(new_primMinusNatS2, Zero)
new_primDivNatS(Succ(Succ(xz30000)), Zero) → new_primDivNatS(new_primMinusNatS1(xz30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(xz30000) → Succ(xz30000)
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS2
new_primMinusNatS1(x0)
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
QDP
                                      ↳ UsableRulesProof
                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(xz30000)), Zero) → new_primDivNatS(new_primMinusNatS1(xz30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(xz30000) → Succ(xz30000)
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS2
new_primMinusNatS1(x0)
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof
                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(xz30000)), Zero) → new_primDivNatS(new_primMinusNatS1(xz30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(xz30000) → Succ(xz30000)

The set Q consists of the following terms:

new_primMinusNatS2
new_primMinusNatS1(x0)
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ RuleRemovalProof
                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(xz30000)), Zero) → new_primDivNatS(new_primMinusNatS1(xz30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(xz30000) → Succ(xz30000)

The set Q consists of the following terms:

new_primMinusNatS1(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primDivNatS(Succ(Succ(xz30000)), Zero) → new_primDivNatS(new_primMinusNatS1(xz30000), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS1(xz30000) → Succ(xz30000)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1 + x2   
POL(new_primMinusNatS1(x1)) = 2 + 2·x1   



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ RuleRemovalProof
QDP
                                                  ↳ PisEmptyProof
                                    ↳ QDP

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS1(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
QDP
                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Zero, Zero) → new_primDivNatS00(xz24, xz25)
new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)
new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) → new_primDivNatS0(xz30000, xz31000, xz30000, xz31000)
new_primDivNatS00(xz24, xz25) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))
new_primDivNatS0(xz24, xz25, Succ(xz260), Zero) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(xz30000) → Succ(xz30000)
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS2
new_primMinusNatS1(x0)
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Zero, Zero) → new_primDivNatS00(xz24, xz25)
new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)
new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) → new_primDivNatS0(xz30000, xz31000, xz30000, xz31000)
new_primDivNatS00(xz24, xz25) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))
new_primDivNatS0(xz24, xz25, Succ(xz260), Zero) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)

The set Q consists of the following terms:

new_primMinusNatS2
new_primMinusNatS1(x0)
new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2
new_primMinusNatS1(x0)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Zero, Zero) → new_primDivNatS00(xz24, xz25)
new_primDivNatS00(xz24, xz25) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))
new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) → new_primDivNatS0(xz30000, xz31000, xz30000, xz31000)
new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)
new_primDivNatS0(xz24, xz25, Succ(xz260), Zero) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primDivNatS00(xz24, xz25) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))
new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) → new_primDivNatS0(xz30000, xz31000, xz30000, xz31000)
new_primDivNatS0(xz24, xz25, Succ(xz260), Zero) → new_primDivNatS(new_primMinusNatS0(xz24, xz25), Succ(xz25))
The remaining pairs can at least be oriented weakly.

new_primDivNatS0(xz24, xz25, Zero, Zero) → new_primDivNatS00(xz24, xz25)
new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1   
POL(new_primDivNatS0(x1, x2, x3, x4)) = 1 + x1   
POL(new_primDivNatS00(x1, x2)) = 1 + x1   
POL(new_primMinusNatS0(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)
new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Zero, Zero) → Zero



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
QDP
                                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Zero, Zero) → new_primDivNatS00(xz24, xz25)
new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
QDP
                                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(xz250)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(xz240), Succ(xz250)) → new_primMinusNatS0(xz240, xz250)
new_primMinusNatS0(Succ(xz240), Zero) → Succ(xz240)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
QDP
                                                          ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ QReductionProof
QDP
                                                              ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz24, xz25, Succ(xz260), Succ(xz270)) → new_primDivNatS0(xz24, xz25, xz260, xz270)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: